
Developing a Representativeness Measurement for 

Program Execution with Instruction-level Visualization
Federico Cifuentes-Urtubey1, David Koppelman2

1University of Maryland, Baltimore County, Baltimore, MD 21250
2Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803

Abstract

Processor performance can be measured by the amount of instructions it

executes in parallel and in prior to when it needs the information to compute a

value. Data exchange is a major factor in the latency of program execution,

causing inconsistency in performance. From simple arithmetic to evaluating

interdependencies between inputs to a processor, there can be unpredictable

branch mispredictions that further change the speed of program execution.

PSE, an instructional-level visualization tool, displays where inefficiencies in

execution occur and dependencies between instruction registers, creating a

system to characterize traits of a program’s execution. Measuring the

instructions in a way that computes their coverage over an entire execution will

allow users to focus on segments where instructions cause stagnant progress.

Visualizations

Using a dataset file, PSE displays an overview plot that refers to the execution

rates and efficiency of a program. This is where the options to sort instructions

are available. Black points portray the execution rates of each instruction

(currently in chronological order), the blue points represent processor prediction

rate, and other points regard prefetching (entering the processor) and

committing (exiting the processor).

A pipeline execution diagram (PED) plot displays steps and memory addresses

for each instruction, with the vertical axis listing single instructions and the

horizontal axis measuring clock cycles in the processor. When instructions are

found to be incorrect from the result of branch mispredictions, they are restarted

for the correct branch and incorrect ones are doomed to be squashed (deleted).

Representativeness measurements will assist in identifying latency for

appealing areas in a segment. If the visible portion of the PED is of poor

performance, a representativeness measurement can encourage instruction

rewriting and optimizing to reduce the lagging.

Conclusions

Organizing the instruction information based on the characteristics listed above

saves time on manually searching for instructions that have slow prefetching or

low efficiency to relate with its coverage over a segment or complete execution.

Future improvements will include implementing the suffix tree data structure

representativeness measurements into PSE. These developments can be

further applied into microarchitecture design research and hardware

performance evaluation.

Acknowledgments 

Background

• PSE (processor simulation elucidator) is an instructional-level data

visualization tool that displays steps, statuses, and cycles of instructions of a

program execution.

• Registers are small amounts of storage on a processor, which are useful to

access data the fastest compared to memory and cache. The number of

registers on a processor depends on its architecture.

• Assembly language is a low-level language that lists single instructions

line-by-line. PSE displays SPARC assembly implementations, and

instructions can be arranged in various orders: chronologically, by most

common instruction, and by prefetch accuracy.

• Each instruction is dependent on previous, incomplete instructions. It can

depend on the register being used, a prior computed value, or a prediction

from branching.

References

1. Koppelman, D., & Michael, C. (2014). Discovering Barriers to Efficient

Execution, Both Obvious and Subtle, Using Instruction-Level Visualization.

Proceedings of the First Workshop on Visual Performance Analysis (VPA)

2014, 36-41. doi:10.1109/VPA.2014.11

2. Kapoor, R. (2009). Avoiding the Cost of Branch Misprediction. Intel

Developer Zone.

Discussion

Representativeness can be measured in various ways using different data

structures. The considerations are as follows:

Static Coverage – Using an integer count of unique instructions to compute a

percentage of coverage within a segment of instructions.

Dynamic Coverage – Constructing an array of integers, with the size being the

number of static instructions, to use as a frequency table to calculate a

percentage of coverage.

Path Representativeness – Describing the jumps and branching in execution,

targeting the predictions and mispredictions using a suffix tree.

Event Representativeness – Marking dynamic instructions with selected events,

such as “correctly predicted” or “mispredicted”. Load instructions can be marked

with where the data is accessed or missed, “L1 hit,” “L2 hit,” “L3 hit,” or

“Memory hit” (cache miss). Forming a suffix tree based on the marked

instruction stream will measure places where high latency occurs.

Methods and Implementation

• Using PSE to analyze the inefficiencies (i.e., cache misses, mispredictions)

and memory or register information for instructions.

• Developing programs in C++ that implement conceptual steps in measuring

representativeness:

o A Representativeness score – Using a frequency table with string text

to compute character coverage. It can also be used to address

similarities in memory addresses, processor registers, etc.

o Using container classes – Considers multiple instances of a target

(i.e., memory address, certain instruction, branch path) to compare

number of instructions between paths and an entire program execution

• Adding a static coverage feature to PSE – A percentage of static (unique)

instructions in a segment that represents the amount of them versus the total

number of instructions.

High Accuracy/Efficiency

Low Accuracy/Efficiency

Static Coverage Display

Do these 

instructions 

cover a 

significant 

portion of 

execution?

Prediction Accuracy Window

This material is based upon work supported by the National

Science Foundation under award OCI-1263236 with

additional support from the Center for Computation &

Technology at Louisiana State University.


